International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

BEYOND THE ROLLCALL: SMART STRATEGY
FOR ATTENDANCE

Mr. Tejas Varute, Mr. Shripad Rajput, Mr. Swapnil Shinde, Mr. Parth Shinde
Department of Electronics and Computer Engineering,
Sharad Institute of Technology, College of engineering,
Mabharashtra, India

Abstract— Attendance tracking is a crucial aspect of
educational institutions, yet the traditional manual
methods are time-consuming and error-prone. This
project presents an innovative solution to this problem
through the development of an automated attendance
system. Utilizing advanced technologies such as face
detection and optical character recognition (OCR), this
system aims to streamline the attendance tracking process
in schools and colleges. By automatically detecting student
faces and extracting roll numbers from stickers affixed to
the left side of their faces, the system eliminates the need
for manual intervention, thereby improving efficiency and
accuracy. Additionally, a user-friendly GUI created using
customtkinter in Python enhances the system's usability
and accessibility. Attendance records are automatically
stored in an Excel file, allowing for easy tracking and
analysis by educators.

Keywords— Automated attendance system, face detection,
optical character recognition (OCR), Automated database
management.

I. INTRODUCTION

Traditional methods of attendance-taking in schools and
colleges often lead to inefficiencies and errors. The
introduction of an automated attendance system marks a
significant advancement in this domain. By harnessing the
power of face detection and OCR technologies, coupled with
an intuitive GUI, the system aims to streamline the attendance
tracking process. This report delves into the development and
implementation of this innovative solution, highlighting its
benefits for educational institutions.

This project report describes the development of a software
solution to automate the attendance process. The software is
implemented using,

Python and takes input image file as:

e Capture live image on Webcam or CCTV cameras that
connected to system.

e Provided pre-captured image from system.

After getting the image it will detect face of students and
extract roll numbers from stickers affixed to the left side
of their faces.

Stores all the collected roll numbers on dynamically arranged

database file which created with help of Microsoft Excel.

II. LITERATURE REVIEW

Manual attendance systems are rife with
inefficiencies, prompting the exploration of automated
alternatives. Existing literature reveals the promise of face
detection algorithms like YOLO for real-time detection and
OCR techniques such as Easy OCR for text extraction.
Moreover, the integration of GUIs plays a pivotal role in
enhancing user experience and system usability. This review
sets the stage for the integration of customtkinter into the
project, emphasizing the importance of user interaction.

Ill. PROBLEM STATEMENT

The manual process of attendance-taking poses
significant challenges, including time consumption and
inaccuracies. This project aims to address these challenges by
automating the attendance tracking process. The objective is to
develop a robust system capable of seamlessly detecting
student faces and extracting roll numbers from stickers affixed
to the left side of their faces. By doing so, the system seeks to
improve efficiency and accuracy in classroom management.

IV. OBJECTIVE

The primary objective of the project is to develop an
automated attendance system leveraging face detection and
OCR technologies. Key goals include real-time detection of
student faces, extraction of roll numbers from stickers, and
automatic logging of attendance records into an Excel file.
Additionally, the system aims to provide a user-friendly GUI
to facilitate ease of use for educators.

A. Software Used:
The development of the automated attendance system relies on
a suite of software tools and libraries, including,

e Software:
» Python IDLE/VS Code.

87

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

Y

Microsoft Excel.

Libraries:

Ultralytics: Provide module for YOLO.

EasyOCR: Provide module for Optical Character
Recognition.

Openpyxl: Provide module to handle Excel file.

OS: It is inbuilt python library help to communication
with Operating system.

OpenCV: Provide module for capture image, edit image,
process on image.

Customtkinter / tkinter: Provide module to create GUL.

YV V VYV Vve

These tools are seamlessly integrated to create a robust and
efficient system capable of accurately tracking student
attendance.

B. Algorithm:

Algorithm for face detection & capturing roll number:
1. START.

2. Set class strength.

3.
i.
ii.

° ._-b

START

Capture Image

i

Get image:
Capture live image using Camera connected to System.
Provide pre-capture image from System storage.

Process on image:

Using YOLO:

Detect all the student faces in image.

Mark a rectangular border around that detected face.

In loop:

Get detected face one by one.

Marking the imaginary rectangular border on right side of
detected face and cropping it.

iii. Providing that cropped image to OCR.

Return the detected roll number in image.
Storing the detected roll number in temporary list.
Storing the detected roll number into the Excel database.

STOP.

Select capture

Detecting Face using
YOLO

Extracting Roll number

Storing collected roll
numbers into the Excel
file

J 1)

Fig. 1.

Flowchart

88

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

Algorithm for database insertion:

1. File creation:
- This ensures that there is always a database file available
for use.
- Check if the file exists.
i. Ifnot,
- create it and initialize it with ‘workbook 1.x1sx’.
ii. Else:
- Check if week ended:
iii. If yes,
- create new file with ‘workbook {count+1} .xIsx’.
iv. Else:
- Use current present ‘workbook {count}.xIsx’.
2. Open the Excel file:
- Check if sheet is created or not:
i. If not, create sheet with attribute ‘Roll No’ and add
tuples from 1 to class strength.
3. Day Check:
- Check if the current day's sheet exists in the database. If
not, create a new sheet for the current day.
- Ensure that the database is properly organized with
separate sheets for each day's attendance.
4. Attendance Processing:
- Process attendance records based on the roll list.
- Update attendance status (Present/Absent) for each roll
number in the database.
5. Result Calculation:

Calculate daily and weekly attendance results based on
the attendance recorded in the database.

Daily result calculation involves iterating over each row
in the current day's sheet and computing the attendance
percentage.

Weekly result calculation involves aggregating daily
results to compute the average attendance for the week.

C. Model Training:

Training:

To train the YOLOvV8 model with a custom dataset of 3669
images with subject face are pre-trained to YOLOv8 which
was already pre-trained for the COCO dataset with
YOLOvV8n.pt This model was trained for this model 100
epochs. All 3669 images were annotated using Roboflow. The
data set was trained with the help of PyTorch library. The
images are labelled YOLO. A total of _ images were used to
validation and _ images were used for training.

To train a model using labelled images, the custom dataset
images are in three folders.

1. Train

2. Test

3 Valid

Each folder has images with labels. Labels are saved in .txt
format, The yaml file (custom_data.yaml) specifies the
location of the folders to call to train a model.

“yolo task=detect, model=train, model=yolov8n.pt,
data=custom_data.yaml, epochs=100, imgsz=640, plos=True”
After the 100 epochs, we get our best model (best.pt).

The trained custom dataset (see Fig. 2)

Epochs | Box loss Class loss DFL loss
(Distributional
focal loss)

1 1.119 1.626 1.534

100 0.493 0.414 1.071

Table 1: Loss of custom dataset

Segment Anything model (SAM) is already pre-trained with
1+billion mask and 11 million images of SA-1B dataset. So
that we can use the SAM without labelling them. It segments
all the things they’ve been trained in. Now, we have to
segment the custom-specific object so we give our trained
model as input and integrated with SAM, so it only focuses on
the model that we trained. So, the latest model is more
productive than all other segmentation models.

89

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

Mew https://pypi.orglproject/ultralytics/5.2.87 available & Update with ‘pip install -U ultralytics'

Ultralytics YOLOUS.0.196 =7 Python-3.10.12 torch-2.4.6+cul2l CUDA:® (Tesla T4, 15102MiB)

engine/trainer: task-detect, mode-train, model-yolovBs.pt, data=/content/datasets/Human-Face-and-Hand-Detection-2/data.yaml, €pochs-100, patience-SO, batch=-16, imgsz
Downloading https: r- = £ to ‘/root/.config/Ultralytics/Arial.tef ...

100% 755k/755k [00:00<00:80, 20.4MB/s]

2024-09-12 10:13:53.629660: E external/local _xla/=la/stream_sxecutor/cuds/cuda_fft.cc:485] Unable to register cufFT factory: Attempting te register factery for plugd
2024-09-12 1@:12:53.651101: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cubNW factory: Attempting to register factory for plug
2024-09-12 10:12:53.658100: € external/local xla/xla/stream_executor/cuds/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for pl
Overriding model.yaml nc=86 with nc=3

From n module argumants
° -1 o1 ultralytics.nn.modules.cony.Conv 3, 32, 3, 2]

1 -1 ultralytics.nn.modules.conyv.Cony 32, 64, 3, 2)

2 -1 ultralytics.nn.modules.block.c2f &2, &4, 1, True]

3 11 ultralytics.nn.modules.cony.Cony 64, 128, 3, 2]

a 12 ultralytics.nn.modules.block.C2f 128, 128, 2, True]
s caa Ultralytics .nn.modules . cony . Cany 128, 256, 3, 2]

s -1z ultralytics.nn.modules.block.C2f [256, 256, 2, True]
7 11 ultralytics.nn.modules.cony.Conyv [256, 512, 3, 2]

a -1 ultralytics .nn.modules .block.c2f [512, 512, 1, True]
° -1 o1 ultralytics.nn.modules.block.SPPF 512, 512, 5]

10 -1 torch.nn.modules.upsampling . Upsample Mone, 2, ‘nearest’]
11 (-1, 8] 1 ultralytics.nn.modules.conyv.Concat 1]

12 -1 ultralytics.nn.modules.block.C2f 7ée, 256, 1]

13 11 toreh.nn.modules . upsampling . Upsample Mone, 2, ‘nearest’]
1a [-1, =] 1 © ultralytics.mn.modules.cony.Concat 1]

1s -1 148224 ultralytics.nn.modules.block.c2f 384, 128, 1]

16 -1 o1 147712 ultralytics.nn.modules.conv.Cony 128, 128, 3, 2]

17 [-1, 12] 1 @ ultralytics.nn.modules.conv.cConcat 1]

18 -1 423056 ultralytics.nn.modules.block.C2f 284, 286, 1]

19 -1 596336 ultralytics.nn.modules.conyv.Conv 256, 256, 3, 2]

20 (-1, 2] 1 ® ultralytics.nn.modules.conv.Concat 1]

21 -1 1 1969152 ultralytics.nn.modules.block.C2f 768, s12, 1]

2 [15, 18, 21] 1 2117209 ultralytics.mn.modules.head.Detect 3, [128, 258, s512]]

2
Model summary: 225 layers, 11136761 parameters, 11136745 gradients, 28.7 GFLOPs

Transferred 349/355 items From pretrained weights
TensorBoard: Start with 'tensorboard --logdic runs/detect/train’, view at http://localtost 6006/
Freezing layer “model.22.df1l.conv.weight’
AMP: running Automatic Mixed Precizion (AMP) checks with YOLOvSR. ..
albumentations: Blur(p=0.01, blur_limit-(3, 7)), MedianBlur(p-0.01, blur_limit-(3, 7)), ToGray(p-0.01), CLAHE(p-0.01, clip_limit-(1, 4.0), tile_grid_siza-(8, 8))
Fusr/lib/pythons. 10/multiprocessing/popen_ fork.py:66: Runtimewarning: o fork() was called. os.fork() iz incompatible with multithraaded tode, and Jax iz multithread:
self.pid = o%.fork()
wal: Scanning /content/datasets/Human-Face-and-Hand-Detection-2/valid/labels... 191 images, © backgrounds, @ corrupt: 108% 191/151 [00:00<00:00, 1362.74it/s]
: New cache created: /content/datasets/Human-Face-and-Hand-Detection-2/valid/labels.cach
Plotting labels to runs/detect/train/labels.jps. ..
‘optimizer=auto’ found, igroring lre-0.@1' and ‘momentum=@.937° and determining best ‘optimizer’, '1r@' and ‘momentum’ automatically. ..
Adamli{1r-0.001429, momentum-0.9) with parameter groups 57 weight(decay-a.a), 64 weight(decay-0.0005), 63 biasz(decay-@.o)
Imsge sizes BO@ train, 500 val
Using 2 dataloader workers
Logging recults to runs/detect/train
Starting training for 18@ epochs.

Epoch GPU_mem bow_loss clsz_lozz dfl_lass Inztances size
17100 6,140 1110 i.a2e i.s3a 73 BOG: 100% 126/126 [01:24<00:00, 1.50it/=]
Class Images Instances Box(P ” MAPSO mMAPS@-95): 100X 6/6 [09:95<00:0a, 1.@3it/s)
a @.56 e.598 o.574 °.285
Epoch GPU_mem box_loss cls_loss dfl_loss Instances size
2/100 &.29G 1.088 1.382 1.488 81 BOG: 100% 126/126 [81:20<00:00, 1.571t/s]
claz= Images Instances Bax(P " MAPSO mARSG-95): 160X 6/6 [00:03c6e 1.8a1e/2]
all 191 as8 ©.428 @.a32 o.388 a.185
Epoch box_less =lz_less dfl_less Instances s.
3/100 1.es8 3.357 T.as5 7z 500: 100% 126/126 [01:18<00:00, 1.61it/s]
Images Instances Box(P R MAPSG mAPS@-95): 196% 6/6 [@0:03<@8:0@, 1.52itss]
58 o.562 o.501 @.475 @.225
Epoch GPu_mem box_loss cls_loss dfl_less Instances size
a/100 sTase T.0aa EDEH T.a79 72 BoG: 100% 126/126 [01:17<00:00, 1.63it/s]
Class Images Instances Box(P R MAPSO mAPS@-95): 100% 6/6 [99:05<00:0a,
a1l 191 ass @.71 @.391 a.a58 @.237
Epoch GPU_mem box_loss els_less dfl_loss Instances size
s/108 57816 5.996 3.271 1.4a8 sa B00: 100% 126/126 [01:20<00:00, 1.57it/s]
claz= Images Instances Bax(P ” mMAPSG mARSE-95): 188% E/6 [@0:03<88:08, 1.75itfz]
all 191 asa @671 @.575 G.635 @, 346
Epoch GPU_mem e1s_lezz dfl_losz Instances size
a/100 5.a6 a i.24a T.an7 77 BOG: 100% 126/126 [01:20:00:00, 1.57it/=]
Class Images Instances Box(P R MAPSO mAPS@-95): 100% 6/6 [00:03<00:0@, 1.71it/s)
a11 121 ass e.647 @.53a @.57 a.327
Epoch <ls_loss dfl_loss Instances size
7/100 i.1s1 i.ae7 73 BOG: 100% 126/126 [01:17<00:00, 1.62it/s]
Instances Bax(P R MAPSG mARSG-95): 160X 6/6 [00:06<06:a8, 1.023/it]
as8 °.624 e.s8 o.704 @.384
Epoch c1z_less dfl_lesz Instances
a/10a 174 T.a02 o7 100% 126/126 [91:21<00:00, 1.541t/s]
Instances Box(P R mAPS@-95): 100% 6/6 [00:05<@8:00, 1.081t/s]
asa o.862 o.888 @411
epoch c1s_less dfl_loss Instances size
a/100 138 1.387 sa 800: 100% 126/126 [01:17<@0:00, 1.62it/s]
Instances Box(P ” MAPSO mAPS@-25): 100% 5/6 [00:03<00i0a, 1.67itss]
ass a.72 a.ss @.734 a.a17
Epoch GPU_mem box_loss cls_less dfl_loss Instances Size
s1/100 s.8a8G a1 80e: 108% 126/126 [01:17<@@:08, 1.621t/s]
Clas= Imeges Instances Bosx (P " MAPSG mAPSG-95): 100% 6/6 [0G:65<60:00, 1.00it/s]
all 191 ass o.874 o.a64 a.846 a.538
Epoch GPU_mem box_loss els_less ofl_loss Instances size
s2/100 5.a6 o542z oTases 1106 33 800: 100% 126/126 [01:11<@0:00, 1.75it/s]
class Images Instances Box (P " mAPS@ mAPS@-95): 108% 6/6 [00:e3<e8:ee, 1.99it/s]
all 151 ass e.a76 a.8a7 a.533
epoch GPU_mem box_less cls_lozs dfl_less Instances size
937100 sTaze 5363 eTasiy i.1e9 31 Boe: 100% 126/126 [01:16<G0:00, 1.65it/z]
Class Images Instances Box(P r MAPSG MAPSO-95): 100% 6/6 [00:93<00:00, 1.77it/s]
all 191 458 o.864 e.a3z @.847 e.538
Epoch GPU_mem box_loss cls_lass dfl_loss Instances size
947100 5.88G &.527 438 1.097 31 8GG: 100% 126/126 [01:14<00:00, 1.70it/s]
Claz= Images Instances Bosx (P " MAPSG mAPSG-95): 100% 6/6 [G0:63ce0:e0, 1.81it/s]
a1l is1 asa 6.871 o.854 a.883 @541
Epoch @PU_mem box_less cls_lass ofl_loss Instances size
ss/100 5,876 @ 5166 oTaa0s 1.e92 a1 Boe: 100% 126,126 [01:14<@0:08, 1.69it/s]
Class Images Instances Box(P " MAPSG mAPSG-95): 100% 6/6 [00:05<80:00, 1.18it/s]
al1 191 ass o.8758 6.6 a.8a83 a.8a1
Epoch GPu_mem box_loss cls_loss dfl_loss Instances size
s6/100 sTaze aTs15s G.az T.091 s 800: 100% 126/126 [01:18<00:00, 1.61it/s]
Class Images Instances Box(P ® mAPS@ mAPS@-95): 100% 6/6 [00:83<eR:e0, 1.72it/s]
all 191 ase o.866 o.85 @.852 a.528
Epoch GPU_mem box_less cls_less ofl_loss Instances size
7/100 sTe26 aTs151 eTaz13 T.091 a0 800: 100% 126/126 [01:13<@0:00, 1.72it/s]
= Images Instances Box (P " mAPS@ mAPS@-95): 108% 6/6 [00:e3<e8:oe, 1.74itss]
al1 191 ass 6,861 ©.86 a.58 a.544
Epoch GPU_mem box_less cls_lazs dfl_less Instances size
s8/100 s aac alsars olazza i.e8a a1 Boe: 100% 126/126 [01:12:00:00, 1.73it/z]
Class Images Instances Box(P ® MAPSG MAPSO-95): 100% 6/6 [00:93<00:00, 1.79it/s]
all 151 ass o.ss2 o.a81 a.ss8 a.
Epoch box_loss cls_loss dfl_loss Instances Size
99/100 @.4994 o.a160 1.078 39 8GG: 100% 126/126 [91:14<00:00, 1.70it/s]
Images Instances Bosx (P " MAPSG mAPSG-95): 100% 6/6 [00:65<e0:00, 1.02it/s]
191 ass °.876 e.86 @.867 a.552
Epoch box_less cls_less dfl_less Instances size
100/100 5.493 5.414 T.071 33 8GG: 100% 126/126 [91:11<00:00, 7716/5])
Images Instances Box(P R MAPS@ mAPS@-95): 100% &/6 [00:04<00:00, 1.45it/s]
al1 191 ass 0.873 o.861 a.884

100 epochs complatad in 2.315 hours.
Optimizer stripped from runsz/detect/train/weights/last.pt, 22.6MB
Optimizer stripped from runs/detect/train/weights/best.pt, 22.6MB

Validating runs/detect/train/weights/best.p
Ultralytics YOLOvS.@.196 =7 Python-3.10.12 torch-2.4.6+cul2l CUDA:@ (Tesla T4, 15102MiB)
Modal summary (fused): 168 layers, 11126745 parameters, © gradients, 28.4 GFLOP

c

laz= Imnges Inztances Box (P " mAPSG mAPS@-95): 100% 6/6 [@@:oe<eo:ea, 1.553/it]
all 11 ass e.891 e.a79 @.874 a.s5%

Human Body 1z1 az a e.969 @.978 @.652

Human Face 1s1 3&3 s62 e.956 @.974 @.75

52 °.711 @.711 @.67 @.275
Speed: @.5ms preprocess, B.3ms inference, @.0ms loss, 5.0ms postprocess per image
Rezults zaved to runs/detect/train

Fig. 2. Train with custom dataset.

90

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

Experimental result:
Evaluation Metrics: The following metrics are used to
evaluate the classification performance of the algorithm,

Corfusion Matns

man Body

.
-

sred bovedd
d

150

Fig. 3. Confusion matrix

Accuracy:

It is defined as the number of correct predictions made by the
model over the total number of predictions. This is good
measure, especially when objective variables in the data are
balance. This can be illustrated as,

Accuracy = (TP + TN) + (TP + TN + FP + FN)

Where, True positive (TP) is defined as the correct recognition
of training group of objects. A True negative (TN) is defined
as a grossly incorrect unspecified factor, i.e. knowing nothing
when something should be known. A false positive (FP) is
defined as false detection, meaning that there is detection even
though no object should be detected. A false negative (FN) is
defined as not detecting any ground truth, i.e. the algorithm
failed to find the object to be found.

F1 score:

The precision of test is determined by the balanced F-measure.
If both false positive and false negative rate are low, the F1
score is considered positive. It is defined as the harmonic
medium of precision and recall.

F1 =2 (precision x recall) + (precision + recall)
=TP + (TP +% (FP + FN))

Precision:
It is the number of positives divided by the total number of
positives predicted by the classifiers.

Precision = (True positive) + (True positive + False positive)

Recall:
It is defined as the number of true positives divided by the
sum of true positives and false negatives.

Recall = (True positive) + (True positive + False Negative)
Validation:

The validation process involves running the model on
validation data set and comparing the model predictions to the
ground truth labels. Several metrics such as mean average
precision (MAP), intercept over union (loU), and false positive
rate (FPR) can be used to evaluate model performance.
Validation results can be used to tune model hyperparameters
such as number of trails, batch size, and number of epochs.
The goal is to find different hyperparameters that lead to the
best performance on the validation dataset.

i _Hrse ranich_ | traingdil_loss
Bl 1 La] —— SRS & li-
Lo g 1.4 il 1
4
T
om 1.3
= na
o6 0n&
. 1.1
237 5 = n4 ; = - - =
L1 LD k Lo oo o =" L
wsalbor Ings walchy logs waletl foam
1o 1

i A s W B
a4 & o
e ——
A

Fig. 4. Loss graph for training and validation dataset.

T MR e ERien (B et e Tecall 18

0.3 . 5.8 §
U= : 2.0
g T4

05 B !l
l 5 4 l
0%
L
= v = = = =
a e 100 1] 1} La 1]

sremem et Lt]

n= =4 l#
0.7
L
]
o7 4

ol .|

a S 100 1] i) 10

s Bl PR S)

Fig. 5. Metrics graph for custom dataset

91

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

P R mAP50 | MAP50-95 B Beyond ol
All 0.891 0.879 0.874 0.559
Face 0.962 0.956 0.974 0.75
Table 2: Metrics of custom dataset Beyond the roll call: Smart strategies for Attendance Management
V. SOFTWARE INTERFACE Sy (e DR

Capture Image

C=

Classroom Attendance System

Loading...

 — Fig. 4 Take attendance window

1@ Beyond Rolcall

Fig. 1 Loading window

Beyond the roll call: Smart strategies for Attendance Management

Enter Password

EEA ;-I

Fig. 2 Password Window

Fig. 5 Database window

& Beyond Rolicall

Loading...

Beyond the roll call: Smart strategies for Attendance Management

Setting Make Attendance Database

Process Done

Select class strength 1 v

Select camera driver Nocamera detected ~

1 Fig. 6 Loading window while performing face detection and
Appearance Mode System d - -

" . OCR and notifying as process done.

Fig. 3 Main setting window

92

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

Fig. 7 Image provided/captured by camera

Attendance Successfully Marked

Face detected : 3

Roll Number detected :

Present Numbers

Fig. 8 Output window showing face and roll count with
collected roll numbers

E presenty.txt

File Edit View

k68 72

Ln1, Col1 B characters 100% UTF-8

Windows (CRI

Fig. 9 ‘Presenty’ text file showing collected present numbers

VI. WORKING

Initialization:

The system initializes the YOLO (You Only Look Once)
model for face detection.

It loads the pre-trained model for YOLO.

Capture Mode Selection:

The system prompts the user to choose between live
capture mode and image input mode.

In live capture mode, the system continuously captures
video feed from the webcam.

10.

93

In image input mode, the user provides an image
containing student faces.

Face Detection:

For each frame captured in live mode or provided image,
the system performs face detection using YOLO.

YOLO identifies the bounding boxes around detected
faces with high accuracy.

Region of Interest (ROI) Selection:

Once a face is detected, the system determines the region
of interest (ROI) around the face.

The system identifies the left side of the face as the area
where the roll number sticker is affixed.

Roll Number Extraction:

The system extracts the ROI containing the roll number
sticker.

Using the EasyOCR library, the system performs optical
character recognition (OCR) on the ROI to extract the roll
number.

The extracted roll number is stored for further processing.

Attendance Recording:

The system matches the extracted roll number with the
corresponding student record.

If a match is found, the system marks the student as
present in the attendance record.

The attendance record is updated in real-time or saved in
memory for later processing.

Excel Logging:

The attendance records are automatically logged into an
Excel sheet.

Each student's attendance is recorded along with the date
and time stamp.

The Excel sheet serves as a centralized database for
attendance tracking & analysis.

User Interface Interaction:

In live capture mode, the system displays the video feed
with overlaid bounding boxes around detected faces.

In image input mode, the system provides feedback on the
processing of the provided image and displays the
extracted roll numbers.

Error Handling:

The system includes error handling mechanisms to
address potential issues during face detection or OCR.

If a face or roll number cannot be detected, appropriate
error messages are displayed to the user.

Feedback and Output:

After processing each frame or image, the system
provides feedback on the attendance status and any errors
encountered.

International Journal of Engineering Applied Sciences and Technology, 2024
Vol. 9, Issue 04, ISSN No. 2455-2143, Pages 87-94
Published Online August 2024 in IJEAST (http://www.ijeast.com)

b. Once all frames are processed or the image input is
complete, the system may generate a summary report of
attendance status.

11. Termination:

a. The system terminates once all frames are processed in
live mode or after completing image input.

b. In live mode, the system continues to run until the user
manually stops the capture.

12. GUI Interaction:

a. If using the system with a GUI, the user interacts with the
system through the graphical interface.

b. The GUI provides options for mode selection, input file
selection, and displays real-time feedback on attendance
status.

VII. FEATURES

Include real-time face detection.

Automatically create reports.

Considers one face one sticker.

Prevent duplicity and provide more accuracy.

Less time consuming compared to other techniques.
Automatic logging of attendance records and a user-
friendly GUI.

VVYVYVYVYVY

These features make the system suitable for application in
schools, colleges, and other educational institutions, where
efficient attendance tracking is essential for maintaining
productivity and accountability.

ADVANTAGES

» Simple and Easy to handle user-friendly interface.

» Having advanced programming which provide dynamic
working.

» Provide more accuracy and less time consumption
compared to other attendance techniques like Traditional
attendance techniques, RFID attendance techniques,
Fingerprint attendance techniques, Face recognition
attendance techniques, etc.

» No requirement of internet after installation.

Accessing and storing data in Excel file which is well known
to any technical and non-technical person.

VIIl. CONCLUSION

The development of an automated attendance system using
face detection and OCR technologies represents a significant
milestone in classroom management.

By automating the attendance tracking process and providing
a user-friendly interface, the system improves,

o Efficiency
o Accuracy
o Usability

With further refinements and enhancements, this system has
the potential to transform attendance management and
contribute to the overall improvement of teaching and learning
experiences.

IX. REFERENCE

[1] Z. Wang, B. Jiao and L. Xu, "Visual Object Detection:
A Review," 2021 40th Chinese Control Conference
(CCC), Shanghai, China, 2021, pp. 7106-7112, doi:
10.23919/CCC52363.2021.9550689. M. Young, The
Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

[2] “Roboflow,” Available: https://app.roboflow.com/.

[3] "GoogleColab,"Colab.research.google.com.2019[Onlin
e]Available: https://colab.research.google.com/.

[4] “Ultralytics,” Available: https://www.ultralytics.com/

[5] “EasyOCR,”Available:https://github.com/JaidedAl/Eas
yOCR/

[6] “Customtkinter,”Available:https://github.com/TomSchi
mansky/CustomTKkinter/

[71 “OpenCV,”
Available:https://github.com/opencv/opencv

[8] Alexander Kirillov, Eric Mintun, Nikhila Ravil, Hanzi
Mao2 Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead Alexander C. Berg, Wan-Yen Lo,
Piotr Dollar, Ross Girshick “Segment Anything” (Apr
2023). https://doi.org/10.48550/arXiv.2304.02643

[91 M. B. Blaschko and C. H. Lampert. Learning to localize
objects with structured output regression. In Computer
Vision — ECCV 2008, pages 2-15. Springer, 2008.

[10] H. Shen and J. Coughlan, “Reading LCD/LED Displays
with a Camera Cell Phone”, Proceedings of the 2006
Conference on Computer Vision and Pattern
Recognition Workshop, 2006.

[11] C. L. Zitnick and P. Doll’ar. Edge boxes: Locating
object proposals from edges. In Computer Vision—
ECCV 2014, pages 391-405. Springer, 2014.

[12] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest
deformable part model for object detection. In
Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 2497-2504. IEEE,
2014.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich. Going deeper with convolutions. CoRR,
abs/1409.4842, 2014,

[14] S. Ren, K. He, R. B. Girshick, X. Zhang, and J. Sun.
Object detection networks on convolutional feature
maps. CoRR, abs/1504.06066, 2015.

[15] S. Gidaris and N. Komodakis. Object detection via a
multiregion & semantic segmentation-aware CNN
model. CoRR, abs/1505.01749, 2015.

94

https://www.ultralytics.com/
https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR
https://github.com/TomSchimansky/CustomTkinter
https://github.com/TomSchimansky/CustomTkinter
https://github.com/opencv/opencv

